Алмазный нанотермометр измерил температуру одной клетки

Зелёный луч лазера направили на частицу золота, чтобы та нагрела соседствующую область. В данном случае наноалмазы (обозначены серым) играют роль сверхчувствительных термометров (

Зелёный луч лазера направили на частицу золота, чтобы та нагрела соседствующую область. В данном случае наноалмазы (обозначены серым) играют роль сверхчувствительных термометров (
(иллюстрация Georg Kucsko).

Нанотермометры способны создать тепловую карту единичных клеток организма

Нанотермометры способны создать тепловую карту единичных клеток организма
(иллюстрация Nature).

Зелёный луч лазера направили на частицу золота, чтобы та нагрела соседствующую область. В данном случае наноалмазы (обозначены серым) играют роль сверхчувствительных термометров (
Нанотермометры способны создать тепловую карту единичных клеток организма
Американские учёные использовали алмазный нанотермометр для измерения температуры не всего тела сразу, а лишь отдельных клеток. Точность прибора учёные объяснили тем, что методика основана на принципе работы квантового компьютера.

Секрет невероятно точного измерения температуры единичных человеческих клеток — в использовании золота и бриллиантов. Но на самом деле, всё не так роскошно, как кажется. Команда физиков из Гарвардского университета (Harvard University) во главе с Михаилом Лукиным (http://www.physics.harvard.edu/people/facpages/lukin.html) вживили в человеческую клетку очень маленькие алмазы, а точнее наноалмазы — их диаметр составлял всего 100 нанометров. Эти микроскопические камешки способны измерить температуру с точностью до 0,001 градуса.

"Теперь у нас есть прибор для контроля температуры на клеточном уровне. Это позволит подробнее изучить реакции биологических систем на температурные изменения", — рассказывает член команды разработчиков новой методики Питер Маурер (Peter Maurer).

Алмазы — не просто красивые камни, пригодные лишь для ювелирного дела, они также незаменимы в высоких технологиях, например, при изготовлении квантовых компьютеров. Дело в том, что алмазы прекрасно справляются с передачей квантовой информации. В обычных компьютерах информация хранится в двоичных единицах информации или битах, которые могут принимать значение либо "1", либо "0". Но квантовые биты или "кубиты" могут принимать значения "1" и "0" одновременно, а также все промежуточные значения.

Зелёный луч лазера направили на частицу золота, чтобы та нагрела соседствующую область. В данном случае наноалмазы (обозначены серым) играют роль сверхчувствительных термометров (иллюстрация Georg Kucsko).

Алмазы могут хранить кубиты в электронном состоянии примесей кристаллической решётки углерода. Эти примеси на самом деле выглядят следующим образом: вместо одного из атомов углерода в решётке стоит один атом азота, а в соседнем узле кристаллической решётки располагается вакансия (отсутствующий атом углерода).

Учёные решили использовать эти пробелы и азотные примеси в своих интересах. Электроны, входящие в состав атомов азота, чрезвычайно чувствительны к магнитным полям. Поэтому наноалмаз с единичными атомами азота можно использовать в магнитно-резонансной томографии. Эти магнитные зонды крайне чувствительны и к минимальным температурным перепадам, а значит, они могут послужить прекрасными термометрами.

Проводимый эксперимент походил на работу ювелиров: исследователи использовали нанопровод, чтобы вживить микроскопические алмазы внутрь эмбриональной клетки человека. Затем на клетку направили луч зелёного лазера. Азотные примеси и вакансии в результате стали причиной появления красной флуоресценции.

Интенсивность красного свечения зависела от локальных температур внутри клетки. Достаточно было с помощью чувствительных приборов измерить яркость испускаемого света, чтобы определить температуру всей клетки с точностью до 0,001 градуса. Так как алмазы отлично проводят тепло, нанотермометры хорошо отражают температуру клетки.

На втором этапе эксперимента в ход пошли не только драгоценные камни, но и драгоценные металлы. Физики вживили в клетку наночастицы золота и также направили на них узкий лазерный луч. Золото нагревалось и параллельно повышало температуру в различных частях клетки. Процесс контролировали с помощью всё тех же алмазов: нанотермометры показывали, где именно стало теплее и насколько.

"Алмазные нанотермометры могут быть очень полезны биологам. Многие процессы, начиная от экспрессии генов и заканчивая клеточным метаболизмом, тесно взаимосвязаны с перепадами температур. Биологи могут изучать развитие простейших организмов, круглых червей, к примеру, путём измерения температуры на клеточном уровне. Можно нагревать отдельные клетки и смотреть, ускорится или замедлится развитие соседних", — предлагает Маурер.



Нанотермометры способны создать тепловую карту единичных клеток организма (иллюстрация Nature).

Применение для нанотермометра найдётся и в области химии, считает автор одного из похожих исследований Дэвид Оушалом (David Awschalom) из Калифорнийского университета. С помощью микроскопических алмазов можно будет проследить за потоками тепла, воздействующими на химические реакции, особенно в тех случаях, когда соприкасаются две субстанции.

Отметим, что гарвардская команда физиков — далеко не первая среди тех, кто пытался создать сверхточный нанотермометр.

"Наши коллеги использовали флуоресцентные молекулы для слежения за температурными изменениями в человеческих клетках. Методика, которую применили мы, в 10 раз точнее всех остальных — наш термометр способен почувствовать флуктуации до 0,05 Кельвина (0,044 °C)", — рассказывает Маурер.

Впрочем, учёным ещё есть к чему стремиться: если поместить термометр за пределы клетки, то его чувствительность повышается до 0,0018 Кельвинов (0,0016 °C).

Об экспериментах и результатах своих трудов Маурер и его коллеги написали статью, которая вышла в журнале Nature.

Также по теме:
Предложено измерять температуру по-новому 
Физики протестировали сверхточные атомные часы 
На Большом адронном коллайдере поставлен мировой рекорд температуры 
Канадская школьница создала фонарь, работающий от тепла человеческого тела